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Motivation: Model selection

In deep learning, how to choose the hyperparameters like
» number of layers?
» number of hidden units?
» convolutional or fully connected layer?
» other invariances?

» parameters of data augmentation?
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Current solution: manual tuning and cross-validation.
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Motivation: Model selection

In deep learning, how to choose the hyperparameters like
» number of layers?
» number of hidden units?
» convolutional or fully connected layer?

» other invariances?

» parameters of data augmentation?

d cee

Current solution: manual tuning and cross-validation.

Wouldn't it be great
if we could just find these by backprop?
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Bayesian model selection

Bayesian inference gives a solution

rly, f.01X)  plylf, X, 0)p(f10)p(0)

0]y, X) = = (1)
P20 =) pYIX)
_ Py If. X, 0)p(f10) p(y|X,0)p(0) 2
pYIXE) pyIX)
p(fly.X) p@1y.X)
Posterior over f and 6 consists of two parts
1. The original posterior over f,
2. A posterior over 0 using the marginal likelihood:
p(yIX,0) = [ plyIf, X, 0)p(fle)ds ®
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Bayesian Deep Learning

Bayesian deep learning has
» focussed strongly on getting uncertainty from the posterior

p(fly, X).
» not focussed on model selection, because it is very hard to find
an approximation to the marginal likelihood

p(y|X,0) = {p(ylf, X, 0)p(f|6)do.
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p(fly, X).

» not focussed on model selection, because it is very hard to find
an approximation to the marginal likelihood

p(y|X,0) = {p(ylf, X, 0)p(f|6)do.

Contrast to Gaussian process models where hyperparameters are
routinely learned using the marginal likelihood!
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» focussed strongly on getting uncertainty from the posterior
p(fly, X).
» not focussed on model selection, because it is very hard to find
an approximation to the marginal likelihood

p(y|X,0) = {p(ylf, X, 0)p(f|6)do.

Contrast to Gaussian process models where hyperparameters are
routinely learned using the marginal likelihood!
» Convolutional Gaussian Processes (van der wilketal, 2017)
How much convolutional structure to use vs fully connected?
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Bayesian Deep Learning

Bayesian deep learning has
» focussed strongly on getting uncertainty from the posterior
p(fly, X).
» not focussed on model selection, because it is very hard to find
an approximation to the marginal likelihood

p(y|X,0) = {p(ylf, X, 0)p(f|6)do.

Contrast to Gaussian process models where hyperparameters are
routinely learned using the marginal likelihood!

» Convolutional Gaussian Processes (van der wilketal, 2017)

How much convolutional structure to use vs fully connected?

» Learning Invariances using the Marginal Likelihood (an der wilketal, 2018)
Backpropagate the parameters of data augmentation, without a
validation set.

» Deep Gaussian Processes (pamianou and Lawrence, 2013)

How many hidden units to use? Deep, but with marg. lik.!

Gaussian Processes without Matrix Inverses Mark van der Wilk Oxford CSML seminar, June 10, 2020 5/30



Gaussian processes as a building block

It is already as simple to perform variational inference in complex GP
models as parametric models.
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everywhere?
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Gaussian processes as a building block

It is already as simple to perform variational inference in complex GP
models as parametric models.

So why aren’t we using deep Gaussian processes
everywhere?

—1
KZZ

» Neural networks only rely on cheap matrix-vector products.

» Aslong as GPs rely on matrix decompositions in each iteration,
they will be slower

» Want computations to be similar to deep learning. Doing things
through optimisation seems key.
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Overview

Variational inference in Gaussian processes
An inverse-free approximate posterior

A general inverse-free variational bound
Recent progress

Conclusions
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A solution to many problems

Variational inference for GPs has been developed over a long period
of time

1. Avoid large matrix inverse for regression (Titsias, 2009)
2. Allow big data through minibatching (Hensman et al., 2013)

3. Analytical intractability of non-Gaussian likelihoods (Hensman
etal., 2015)

4. General models: Latent variables (Titsias and Lawrence, 2010),
deep structure (Damianou and Lawrence, 2013), recurrent
structure (Frigola et al., 2014), ...
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A solution to many problems

Variational inference for GPs has been developed over a long period
of time

1. Avoid large matrix inverse for regression (Titsias, 2009)
2. Allow big data through minibatching (Hensman et al., 2013)

3. Analytical intractability of non-Gaussian likelihoods (Hensman
etal., 2015)

4. General models: Latent variables (Titsias and Lawrence, 2010),
deep structure (Damianou and Lawrence, 2013), recurrent
structure (Frigola et al., 2014), ...

Currently it is generally applicable to a wide variety of models.
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Variational Inference in GPs

Crucial property that other approximations lack

Variational approx maintain properties of the non-parametric GP
» Predict with infinite basis functions (better uncertainty)
» Approximate marginal likelihood of non-parametric model
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Recap: Sparse Stochastic Variational Inference

In three simple steps.

1. Introduce tractable variational distribution

q(f () = p(fOIf(2))q(f(2)) )
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Recap: Sparse Stochastic Variational Inference

In three simple steps.

1. Introduce tractable variational distribution

q(f () = p(fOIf(2))q(f(2)) )

2. Formulate variational lower bound

L =Y By(ro 108 p(yal f(6n))] = KLIG(F(Z)Ip(f(Z)]  (5)

3. Maximise £ to minimise KL[g(f)||p(f]y)]
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Approximate posterior
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Approximate posterior

1. Conditioning the prior on observations at inducing input
locations Z. We sometimes denote u = f(Z) for brevity.

PO w) = N (fOrk Kbk —kzKbkz)  (6)
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Approximate posterior

1. Conditioning the prior on observations at inducing input
locations Z. We sometimes denote u = f(Z) for brevity.

PO w) = N (fOrk Kbk —kzKbkz)  (6)
2. Specify a freely parameterised Gaussian marginal on u:

q(u) = N(u;m,S) )
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Approximate posterior

1. Conditioning the prior on observations at inducing input
locations Z. We sometimes denote u = f(Z) for brevity.

PO W) = N (FOikzK bk —kzK bkz ) (6)
2. Specify a freely parameterised Gaussian marginal on u:
q(u) = N(w;m,S) )
3. Marginalise u to find approximate posterior:
f p(f u)du
( f(kzKzhm k. — k7K bk +k 7KL SK bk ) (8)

Variational parameters: {Z, m, S}
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Predictions and bound

Remember the ELBO:

£ = S Eq(ro 108 pal f )] = KLIG(F2)P(F(Z)] )

Start with focus on expected log likelihood...
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Predictions and bound

Remember the ELBO:

£ = S Eq(ro 108 pal f )] = KLIG(F2)P(F(Z)] )

Start with focus on expected log likelihood... Take e.g. Gaussian

1 1 o2
Eq(roa [10g p(ynlf (xn))] = —5 log 270 — 52 Wn = Hn)® — 2 (10)

—_— — Y

Hn o2
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Predictions and bound

Remember the ELBO:

£ = S Eq(ro 108 pal f )] = KLIG(F2)P(F(Z)] )

Start with focus on expected log likelihood... Take e.g. Gaussian

1 1 o2
Eq(roa [10g p(ynlf (xn))] = —5 log 270 — 52 Wn = Hn)® — 2 (10)

A(F()) = N £k K m k. — kK Lkz + k2K LSK LKy, )
——— D)

Hn o2
We require computation of matrix inverse Kg%
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Removing matrix inverses

Can we reparameterise the approximate posterior to remove the
matrix inverses?

q(f () = N(fC); pu, 07) (11)

pn = k7K, m =k zm’ (12)
(7,% =k.— kZKE%kZ + szZ%SKZ%kZ

=k.— kZKE]ZkZ + kizs/kzi (13)
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Removing matrix inverses

Can we reparameterise the approximate posterior to remove the
matrix inverses?

q(f () = N(fC); pu, 07) (11)

pn = k7K, m =k zm’ (12)
(7,% =k.— kZKE%kZ + szZ%SKZ%kZ

=k.— szE%kZ + kizs/kzi (13)

Some progress, but k.z Kg%kz. is the difficult term.
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Upper bounding the predictive variance

Looking back at the expected log likelihood term

1 1 o2
Eq(f o l0g p(yulf (xn))] = 5 log 27t0” — ﬁ(yn — n)* — 5072 (14)

U% =k.— k.ZKE%ka” + k.ZSIkan (15)
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Upper bounding the predictive variance

Looking back at the expected log likelihood term

2
n

1 1 1o
Eq(f(xn))[log p(ulf(xn))] = D) lOgZTL’U’Z - ﬁ(yn - l’ln)z T 552 (14)
02 =k. — k7K, L kzy, +kzSkzy, (15)

Observation: An upper bound on ¢? gives a lower bound to the
ELBO. Le. for 62 > 02,

L= 1E./\/'(f(xn);y,,,c‘r,z,) [log p(yn‘f(xn))] -KL< L < p(Y) (16)
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Upper bounding the predictive variance

Can we find an upper bound to the predictive variance?
T = Ky — K, 2K S K7, + Ky, 28 Kz, (17)
Observation: —k,, ZKEékan is the minimum of a quadratic.
—kyx, 2K o K7y, = min v'Kzzv -2k} ;v (18)

v

v = KE%kan = argmin v'Kzzv —2k; ;v (19)
v
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Upper bounding the predictive variance

Can we find an upper bound to the predictive variance?

2 -1 !
0-71 = kxnxn - anZKZZkZX/’I + kanS kZX,/,
Observation: —k,, ZKEékan is the minimum of a quadratic.

-1 : T T
—ky,z K77 kzy, = min v Kzzv =2k, ;v

* -1 . T T
v, = K 7 Kkzx, = argmin v Kzzv =2k, ;v
A\

Both follow from
(v — K7 kzx,) Kzz (v — K3 kzy,) = 0

Also noted by Gibbs and MacKay (1997) and discussed in Davies (2015) for

Conjugate Gradient implementations of GPs
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Upper bounding the predictive variance

Problem: Need to optimise over v, € RM for all N data points!
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Upper bounding the predictive variance

Problem: Need to optimise over v, € RM for all N data points!

. . x _ 1r—1 . .
Since solution v}, = K77 kz,,, we can alternatively parameterise

02 = ky,x, + kn,zTKz7z TV, — 2Ky, 7Tk 7y, + ky,zS'kzy,  (21)
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Upper bounding the predictive variance

Problem: Need to optimise over v, € RM for all N data points!

. . x _ 1r—1 . .
Since solution v}, = K77 kz,,, we can alternatively parameterise

02 = ky,x, + kn,zTKz7z TV, — 2Ky, 7Tk 7y, + ky,zS'kzy,  (21)

]RMXM

» Optimise over T e instead of N times v,, € RM,
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Upper bounding the predictive variance

Problem: Need to optimise over v, € RM for all N data points!

. . x _ 1r—1 . .
Since solution v}, = K77 kz,,, we can alternatively parameterise

02 = ky,x, + kn,zTKz7z TV, — 2Ky, 7Tk 7y, + ky,zS'kzy,  (21)

]RMXM

» Optimise over T e instead of N times v,, € RM,

» Recovers original bound at T = K,
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Log-concave bound

Using the upper bound on the predictive variance
05 = kxyxy + Ky, 7 TKz7 Tk 7, — 2Ky, 7Tk zx, + kx,z8'kzx, = 07, (22)
we get a lower bound on the ELBO

Lie = Exr(yx, e 108 Pl f(x0))] ~ KL 23)
<L <ply). (24)
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Using the upper bound on the predictive variance
05 = kxyxy + Ky, 7 TKz7 Tk 7, — 2Ky, 7Tk zx, + kx,z8'kzx, = 07, (22)
we get a lower bound on the ELBO

Lie = Exr(yx, e 108 Pl f(x0))] ~ KL 23)
<L <ply). (24)

» Contains no matrix inverses (O(M?) instead of O(M?3))
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Log-concave bound
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we get a lower bound on the ELBO

Lie = Exr(yx, e 108 Pl f(x0))] ~ KL 23)
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» Contains no matrix inverses (O(M?) instead of O(M?3))

» Valid for all log-concave likelihoods
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Log-concave bound

Using the upper bound on the predictive variance
05 = kxyxy + Ky, 7 TKz7 Tk 7, — 2Ky, 7Tk zx, + kx,z8'kzx, = 07, (22)
we get a lower bound on the ELBO

Lie = Exr(yx, e 108 Pl f(x0))] ~ KL 23)
<L <ply). (24)

» Contains no matrix inverses (O(M?) instead of O(M?3))
» Valid for all log-concave likelihoods

» Recovers the original bound when T = K
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Log-concave bound

Using the upper bound on the predictive variance
05 = kxyxy + Ky, 7 TKz7 Tk 7, — 2Ky, 7Tk zx, + kx,z8'kzx, = 07, (22)
we get a lower bound on the ELBO

Lie = Exr(yx, e 108 Pl f(x0))] ~ KL 23)
<L <ply). (24)

» Contains no matrix inverses (O(M?) instead of O(M?3))

Valid for all log-concave likelihoods

v

» Recovers the original bound when T = K

» Is it a variational bound?
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Log-concave bound

Using the upper bound on the predictive variance
05 = kxyxy + Ky, 7 TKz7 Tk 7, — 2Ky, 7Tk zx, + kx,z8'kzx, = 07, (22)
we get a lower bound on the ELBO

Lie = Exr(yx, e 108 Pl f(x0))] ~ KL 23)
<L <ply). (24)

» Contains no matrix inverses (O(M?) instead of O(M?3))

Valid for all log-concave likelihoods

v

» Recovers the original bound when T = K
» Is it a variational bound? No! log p(y) — £i. # KL[g||p(f | y)]
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KL term

But,
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KL term

But, we still have the log determinant in the KL term

1 !/
KL[g(u)||p(u)] = E[TT[KZZS/] +m'Kzzm — M —log|Kzz| —log|S'|] .
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KL term

But, we still have the log determinant in the KL term

1 !/
KL[g(u)||p(u)] = E[TT[KZZS/] +m'Kzzm — M —log|Kzz| —log|S'|] .

» Trace term can be handled by Hutchinson estimator

Tr[KzzS'] = E[r'KzzS'r] (25)
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KL term
But, we still have the log determinant in the KL term
1
KL[g(u)||p(u)] = E[TT[KZZS/] +m'Kzzm — M —log|Kzz| —log|S'|] .

» Trace term can be handled by Hutchinson estimator

Tr[KzzS'] = E[r'KzzS'r] (25)

» Logdet is a bit harder
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Logdet estimator

We only need gradient of log|Kzz| to train.

610g|Kzz| _
0Kzz
~ KE%rrT (26)
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Logdet estimator

We only need gradient of log|Kzz| to train.

610g|Kzz|

-1 -1
K, =K,, = E; [KZerT]

~ K Lrr’ (26)
Use Conjugate Gradient to estimate Kg%r:

6log]KZZ]

_ T
Ky CG(Kzz, r)r (27)
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Logdet estimator

We only need gradient of log|Kzz| to train.

610g|Kzz|

-1 -1
K, =K,, = E; [KZerT]

~ K Lrr’
Use Conjugate Gradient to estimate Kg%r:

6log]KZZ]

_ T
Ky CG(Kzz, r)r

» CG is iterative, and in worst case costs O(M?) to find the
inverse-vector product.
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Logdet estimator

We only need gradient of log|Kzz| to train.

dlog|Kzz| -1 -1

W == KZZ = :[El‘ [KZerT]

~ K Lrr’ (26)
Use Conjugate Gradient to estimate Kg%r:

Olog|Kzz| = CG(Kzz, preconditioner = T, r)r' (27)

» CG is iterative, and in worst case costs O(M?) to find the
inverse-vector product.

» If we use T as a preconditioner: At the optimum it will converge
in a single iteration since KzzT* = I!
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Log-concave bound: overview

L5 = En(ppn2) 108 Pl f (x1))] = KL (28)
5% = kxnxn + k-)I(—nZTKZZTkZXn - 2anZTkan + kanS/kan = (7—% (29)

Tricks:
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L5 = En(ppn2) 108 Pl f (x1))] = KL (28)
5% = kxnxn + k-)I(—nZTKZZTkZXn - 2anZTkan + kanS/kan = (7—% (29)

Tricks:

» Upper bound to the predictive variance is lower bound to ELBO.
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Log-concave bound: overview

L5 = En(ppn2) 108 Pl f (x1))] = KL (28)
5_% = kxnxn + k-)I(—nZTKZZTkZXn - 2anZTkan + kanS/kan = (7_% (29)

Tricks:
» Upper bound to the predictive variance is lower bound to ELBO.

» Introduce new parameter T, with argmax, £ = K.
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Log-concave bound: overview

L5 = En(ppn2) 108 Pl f (x1))] = KL (28)

05 = kxox + K5, 7TK77 Tk zx, — 2Ky, 7Tk zx, + kx,z28'kzx, = 05 (29)
Tricks:

» Upper bound to the predictive variance is lower bound to ELBO.

» Introduce new parameter T, with argmax, £ = K.

» Preconditioned conjugate gradient for gradient of log|Kzz|.
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Log-concave bound: overview

L5 = En(ppn2) 108 Pl f (x1))] = KL (28)
5_% = kxnxn + k-)I(—nZTKZZTkZXn - 2anZTkan + kanS/kan = (7_% (29)

Tricks:
» Upper bound to the predictive variance is lower bound to ELBO.
» Introduce new parameter T, with argmax, £ = K.
» Preconditioned conjugate gradient for gradient of log|Kzz|.

Properties:
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Log-concave bound: overview

L5 = En(ppn2) 108 Pl f (x1))] = KL (28)
5_% = kxnxn + k-)I(—nZTKZZTkZXn - 2anZTkan + kanS/kan = (7_% (29)

Tricks:
» Upper bound to the predictive variance is lower bound to ELBO.
» Introduce new parameter T, with argmax, £ = K.
» Preconditioned conjugate gradient for gradient of log|Kzz|.
Properties:

» Recovers Hensman et al. (2013) at optimum T = K ..
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Log-concave bound: overview

L5 = En(ppn2) 108 Pl f (x1))] = KL (28)
5_% = kxnxn + k-)I(—nZTKZZTkZXn - 2anZTkan + kanS/kan = (7_% (29)

Tricks:
» Upper bound to the predictive variance is lower bound to ELBO.
» Introduce new parameter T, with argmax, £ = K.
» Preconditioned conjugate gradient for gradient of log|Kzz|.
Properties:
» Recovers Hensman et al. (2013) at optimum T = K ..

» Convex in T — no new local optima
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L5 = En(ppn2) 108 Pl f (x1))] = KL (28)
5_% = kxnxn + k-)I(—nZTKZZTkZXn - 2anZTkan + kanS/kan = (7_% (29)

Tricks:
» Upper bound to the predictive variance is lower bound to ELBO.
» Introduce new parameter T, with argmax, £ = K.
» Preconditioned conjugate gradient for gradient of log|Kzz|.
Properties:
» Recovers Hensman et al. (2013) at optimum T = K ..
» Convex in T — no new local optima

» Computational cost becomes O(M?) if T near its optimum.
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A fully variational bound

Log-concave bound has limitations. Can we find a “proper”
variational bound?
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variational bound?

Work backwards from predictive distribution:

N(fn; kx,,ZIn/ kx,,x,,"’kx,,ZTKZZTkan_kanZTkan + kanS/kan) =
N(fn; kanm/ kxnxn_ kanKE%kan + kanKE%SKE%kZXH)

= S =Kyz +KyzTKy7TKy7 —2Kz7;TKz7 + KZZS’KZZ (30)
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A fully variational bound

Log-concave bound has limitations. Can we find a “proper”
variational bound?

Work backwards from predictive distribution:

N(fn; kx,,ZIn/ kx,,x,,"’kx,,ZTKZZTkan_kanZTkan + kanS/kan) =
N(fn; kanm/ kxnxn_ kanKE%kan + kanKE%SKE%ka”)

= S =Kyz +KyzTKy7TKy7 —2Kz7;TKz7 + KZZS’KZZ (30)

» Gives a 1-1 mapping between our inverse-free bound and
original bound

» By substituting S into the original bound, we get a fully
variational inverse-free bound

» Only KL term changes, can be dealt with in similar way
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Fully variational bound: overview

L =Y Eysoenlog plyal f(xn)] = KLIg(f(Z)|lp(f(Z)] B

n

» Identical to Hensman et al. (2013) bound with substitution
S=Kz7z +Kz;zTK;7TKz7 — 2K77TKz7 + K7z7S' K77

Gaussian Processes without Matrix Inverses Mark van der Wilk Oxford CSML seminar, June 10, 2020 22/30



Fully variational bound: overview

L =Y Eysoenlog plyal f(xn)] = KLIg(f(Z)|lp(f(Z)] B

n

» Identical to Hensman et al. (2013) bound with substitution
S=Kz7z +Kz;zTK;7TKz7 — 2K77TKz7 + K7z7S' K77

» Requires CG estimator for the logdet term.
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Fully variational bound: overview

L =Y Eysoenlog plyal f(xn)] = KLIg(f(Z)|lp(f(Z)] B

n

v

Identical to Hensman et al. (2013) bound with substitution
S=Kz7z +Kz;zTK;7TKz7 — 2K77TKz7 + K7z7S' K77

» Requires CG estimator for the logdet term.
» Drop-in change for any variational GP model (e.g. deep GPs)

» Only requires matrix-vector multiplies, O(M?) cost when
T ~ K.
7z
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Fully variational bound: overview

L =Y Eysoenlog plyal f(xn)] = KLIg(f(Z)|lp(f(Z)] B

n

v

Identical to Hensman et al. (2013) bound with substitution

S =Kzz+KzzTKzzTKzz — 2Kz7TKzz + KzzS'Kzz

» Requires CG estimator for the logdet term.

» Drop-in change for any variational GP model (e.g. deep GPs)

» Only requires matrix-vector multiplies, O(M?) cost when
T~ KE%

» No additional gap when T = K.
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Toy 1D dataset

SVGP RSVGP --bad T RSVGP -- T=K;2
4
2
o w W W
-2
-4
-6
2 o 2 4 6 8 2 o 2 ) s 2 o 2 4 6 8

» Left: SVGP fit to data
» Middle: Inverse-free predictions with T = 0
» Right: Optimised T = K
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Toy 1D dataset

SVGP RSVGP --bad T RSVGP - T =K}
]
2
-2
-4
-6
-2 o 2 4 6 8 -2 2 4 6 8 -2 0 2 4 6 8
» Left: SVGP fit to data
» Middle: Inverse-free predictions with T = 0
» Right: Optimised T = K
—60 —— SVGP SE
= SVGP GE
—65 —— RSVGP GE init Kuu
—— RSVGP GE init KuuT
g -70 —— RSVGP GE Kuu
—80
a5 A
25 50 75 100 125 150 175 2

Gaussian Processes without Matrix Inverses

iterations (x100)
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SVGP, Iml: 85.94

Fully variational bound

Deep Gaussian process

DSVGP, Iml: 422.24 s DRSVGP - fr (Kuu), Iml: 350.56
. =3

400 4
I
o 200
@
3
¥ I
04 | — SVGP —— DRSVGP - lc (Kuu) = DRSVGP - fr (Kuu)
—— DSVGP —— DRSVGP - Ic (KuuT) —— DRSVGP - fr (KuuT)
—200 T T T T T T T T = T
0 250 500 750 1000 1250 1500 1750 2000
iterations (x100)
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The bad news

train/Iml
tag: train/Imi

B adaiay 275 1 et d e oSt bt Mhms Atk &' Masit i cen aean

P L

Orange: SVGP, Others: Inverse-free

Procedure: Optimise everything with Adam, including T
» Less time per iteration
» Slower convergence
» Strange divergence behaviour
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Discussion

Work in progress because of the difficult optimisation behaviour.

Developments since AABI:
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Discussion

Work in progress because of the difficult optimisation behaviour.

Developments since AABI:
» Improved logdet estimators (no more CG inner loops)

» Analysis of curvature of objective function gives hints into what
causes behaviour
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Conclusions

» We have introduced inverse-free variational bounds to GP
models

» We prove properties about their optima, and validate those
experimentally

» However, a wall-clock speed-up in training is still elusive
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Conclusions

» We have introduced inverse-free variational bounds to GP
models

» We prove properties about their optima, and validate those
experimentally

» However, a wall-clock speed-up in training is still elusive

Thanks for your attention!
I'm curious about your thoughts!
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