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About our research group

§ 2020–: Lecturer (Assistant Prof) at Imperial College London.
§ Currently growing a research group.
§ Research focus:

§ Gaussian process inference, backed by theory to make it reliable.
§ Automatic learning of inductive bias in neural networks.
§ Central question: When should neurons be connected?
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Overview

How can Sparse GP approximations help with
studying infinitely wide NNs?

Outline:
1. How do Sparse GPs work?
2. How accurate are Sparse GPs?
3. Sparse GPs, Data Augmentation and Invariance
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Recap: Gaussian Processes & Infinite Width NNs
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§ Place Gaussian prior distribution on weights.
§ As number of hidden units Ñ 8, we have (conditions apply)1:

§ Function values t f px1q, f px2q, . . . u become jointly Gaussian.
§ Covr f pxq, f px1qs “ kpx, x1q.
§ Kernel function depends on NN architecture, but can be computed

for many!2

1Neal (1996); Matthews et al. (2018); Lee et al. (2018)
2Garriga-Alonso et al. (2019); Novak et al. (2019); Yang (2019)
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Recap: Gaussian Processes & Infinite Width NNs
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§ For sets of points X P RNˆD, Z P RMˆD, we denote the covariance
of their function values as

Covr f pXq, f pZqs “ KXZ P RNˆM , rKXZsij “ kpxi, xjq. (1)
§ Prior on function values for any set of input points is

»

—

–

f px1q

...
f pxnq

fi

ffi

fl
“ f pXq „ N pµ, KXXq . (2)
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Recap: Gaussian Processes

Given observations through some likelihood ppyn| f pxnqq, find:
1. the distribution of function values at new points f px̂q,
2. the best hyperparameters θ of the kernel kθpx, x1q.

Use Bayes’ rule (X1 includes training and testing points):

pp f pX1
q|yq “

śN
n“1 ppyn| f pxnqqpp f pX1q|θqppθq

ppyq
(3)

“
ppy| f pXqqpp f pX1q|θq

ppy|θq
looooooooooooomooooooooooooon

pp f pX1q|y,θqq

¨
ppy|θqppθq

ppyq
looooomooooon

ppθ|yq

(4)

For Gaussian likelihood ppyn| f pxnqq “ N
`

yn; f pxnq, σ2˘

:
1. pp f px̂q|y, θq “ N

`

f px̂q; Kx̂XpKXX ` σ2Iq´1y, . . .
˘

2. θ˚
“ argmaxθ log ppy|θq “ logN

`

y; 0, KXX ` σ2I
˘
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The Problems

1. pp f px̂q|y, θq “ N
`

f px̂q; Kx̂XpKXX ` σ2Iq´1y, . . .
˘

2. θ˚
“ argmaxθ log ppy|θq “ logN

`

y; 0, KXX ` σ2I
˘

Scalability limited by N ˆ N kernel matrix:
1. Storing N ˆ N matrix requires OpN2q memory.
2. Inverting / log determinant takes OpN3q time.
3. Time for calculating KXX asymptotically scales as OpN2q

... but with huge constant, so this is the real bottleneck!

The GP side of my research develops solutions which have guarantees
on quality and are automatic.
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Solutions: Speed up Linear Algebra

Conjugate Gradient based solutions (Gibbs and Mackay 1997; Wang
et al. 2019; Artemev, Burt, and van der Wilk, 2021)

§ Speeds up inverse/logdet to OpN2 Iq (how many iterations?)
§ Still requires full KXX: 1

2 N2 ` N 👎

Nyström based solutions (Smola and Schölkopf, 2000; Williams and
Seeger, 2001)

§ Speeds up inverse/logdet to OpNM2q (how big is M?)
§ Only requires pN ` 1qM ` 1

2 M2 kernel evals 👍
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Nyström Approximation

We want to compute 3 quantities:
1. c ´ 1

2 log
ˇ

ˇKXX ` σ2I
ˇ

ˇ ´ 1
2 yTpKXX ` σ2Iq´1y (marginal likelihood)

2. Kx̂XpKXX ` σ2Iq´1y (pred mean)
3. Kx̂x̂ ´ Kx̂XpKXX ` σ2Iq´1KXx̂ (pred variance)

Straightforward Nyström suggests:
§ Select a set Z with |Z| “ M ! N training points
§ Construct the approximation KXX « KXZK´1

ZZKZX

§ Use Woodbury for cheap inverse approximation:
pKXX ` σ2Iq´1

« pKXZK´1
ZZKZX ` σ2Iq´1

“ σ´2I ´ σ´4KXZpKZZ ` σ´2KZXKXZq
´1KZX
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Nyström and Inducing Variables

§ Predicted variances can be negative 👎👎👎
§ How good is the approximation?
§ When is M large enough?
§ How to select the points in Z?

In a single framework, variational inducing variable approximations
elegantly gives:

§ valid posterior approximations,
§ a quantification of the quality of the approximation,
§ a way to determine when M is sufficiently large,
§ methods for selecting points in Z,

as well as an approximation of KXX based on Nyström.
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Variational Inference for Gaussian Processes

Problem: Computational scaling of posterior and marglik.
Three steps of Variational Inference:

1. Introduce a tractable family of variational distributions:
GP posteriors for arbitrary Gaussian likelihoods q̃pỹ| f pZqq

qp f px̂q, f pXq, f pZqq “
q̃pỹ| f pZqqpp f pZq, f px̂q, f pXqq

q̃pỹq
(5)

“ pp f px̂q, f pXq| f pZqqqpZq (6)

2. Construct L such that3 L “ log ppyq ´ KLrqp f q||pp f |yqs

L “

N
ÿ

n“1

Eqp f pxnqqrlog ppyn| f pxnqqs ´ KLrqp f pZqq||pp f pZqqs (7)

3. Minimise KL divergence by maximising L!
3Hensman et al. (2013); Matthews (2016)
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Understanding Inducing Points

We can control Z, and µ, Σ of qp f pZqq.
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Sparse GP Regression

Gaussian noise regression works particularly well, since the optimal
µ, Σ can be found in closed form4, giving

L “ logN
´

y; 0, KXZK´1
ZZKZX ` σ2I

¯

´
1

2σ2 TrpKXX ´ KXZK´1
ZZKZXq (8)

The ELBO helps us select every free paramter of the method!
§ Q: How to select hyperparameters?

A: Maximise L. No overfitting, since it’s a lower bound.
§ Q: How to select inducing inputs Z?

A: Maximise L only reduces KL to true posterior.
§ Q: When do we have enough inducing points?

A: Once L stops increasing (we also have upper bound).

4Titsias (2009)
Sparse GPs and Infinitely Wide Neural Networks Mark van der Wilk Google Brain, Sep 21, 2021 14



Demo

We jointly optimise L w.r.t. its two free parameters: Z, θ.
§ Approximation and fit are poor when M is too small.
§ ELBO convergences with M ! N.
§ Upper bound5 converges later to confirm good quality.

5See Titsias (2014), or Burt et al. (2020) for a discussion.
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Theory Gives Solutions

In “Convergence of Sparse Variational Inference in Gaussian Processes
Regression” (Burt et al., 2020) we

§ discussed a gradient-free inducing point initialisation scheme
§ proved that it would give arbitrarily accurate results as N Ñ 8

§ proved that the asymptotic complexity was reasonable
OpNplog Nq2Dplog log Nq2qq for SqExp, barely above linear6

Practical implications for the Titsias (2009) method:

6Recall that OpNplog NqDq “ OpN1`εq for any D P N and ε ą 0, and that D is fixed in our problem.
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Sparse GPs: Summary

Recipe for Sparse Variational GP Regression7:
1. Select initial number of inducing points M to try.
2. Select Z with the greedy variance method (Burt et al., 2020).
3. Optional: Optimise L w.r.t. θ.
4. Stop if upper-lower gap is small, or if improvement in L is small.

Otherwise repeat from step 2.

7as recommended in Burt, Rasmussen, and van der Wilk (2020)
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Sparse GPs: Conclusion

Sparse Gaussian Process approximations provide a unified way to
approximate GPs:

§ Correct and consistent posterior approximations.
§ Single objective function can be used for setting all parameters.
§ Measurable quality of approximation.
§ For certain kernels, guarantees of good and cheap approximation

as N Ñ 8 (+conditions).
§ Burt et al. (2020) hints at a link between generalisation and

approximation sparsity/quality. This would be very interesting to
investigate in the context of infinite NN kernels.
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Modelling Assumptions

Goal: Learn some mapping f : X Ñ Y .

Assumptions about f influence generalisation performance:
§ Fully connected vs convolutional?
§ How smooth is the function?
§ Data augmentation? I.e. what transformations leave the label

unchanged?

Central question:

How can changes on the input affect the output?

The fewer unnecessary degrees of variation we have, the better we will
generalise.

Goal: Find the right degrees of freedom as well as learning f
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Example: Symmetry

§ Learn symmetric function
§ Pick either symmetrically constrained model or flexible model
§ Symmetric model generalises better
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Data Augmentation and Invariances

Data augmentations express the knowledge about f p¨q that the output
doesn’t change in response to changes in the input. This is invariance.

We can consider strict invariances:

f pxq “ f ptpxqq @x P X @t P T (9)

or softer invariance:

P
´

p f pxq ´ f ptpxqq q
2

ą L
¯

ă ε @x P X t „ pptq (10)
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Data Augmentation and Invariance

Questions:
§ How should we incorporate knowledge of invariances/DA into our

models? (Particularly in the Bayesian context!)
§ How can we select the right invariance/DA if we do not know it a

priori?

In “Learning Invariances using the Marginal Likelihood” (v.d.Wilk
et al., 2018) we

§ Provide a clear formulation of how this can be done in a Bayesian
context.8

§ Provide a practical procedure for learning invariances using
gradient descent in GPs.

8https://statmodeling.stat.columbia.edu/2019/12/02/
a-bayesian-view-of-data-augmentation/
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Model Selection according to Bayes

Model selection from a Bayesian point of view:

pp f , θ | yq “
ppy | f qpp f | θqppθq

ppyq

“
ppy | f qpp f | θq

ppy | θq
loooooooomoooooooon

pp f | y,θq

ppy | θqppθq

ppyq
loooooomoooooon

ppθ | yq

Key quantity for model selection is the marginal likelihood

ppy | θq “

ż

ppy | f qpp f | θqdθ

By handing our uncertainty on f p¨q in a Bayesian way, we also get the
marginal likelihood for model selection.
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Model Selection: Procedure

Our desired simplified procedure:
§ Place prior on f with invariances described by θ.
§ Find posterior over functions pp f | y, θq.
§ Perform Maximum Likelihood on ppy | θq.

This is more safe from over-fitting that performing Maximum
Likelihood on f , θ together.

(If you’re sceptical, ask me for an example at the end.)
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Marginal Likelihood

log ppy | θq “ log ppy1 | θq ` log ppy2 | y1, θq ` log ppy3 | tyiu
2
i“1, θq . . .

“

N
ÿ

n“1

log ppyn | tyiu
n´1
i“1 , θq
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Practicalities

Procedure so far is completely general and abstract. We need to:
§ Choose our model class through the prior pp f | θq

§ Parameterise invariances in the prior through θ

§ Show how to calculate pp f | y, θq and ppy | θq

We choose
§ Gaussian process priors pp f | θq

§ A construction of invariant GPs following Kondor (2008) and
Ginsbourger et al. (2012)

§ Variational approximation for posterior and marginal likelihood
(Titsias 2009; Hensman et al. 2013)
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Invariant Gaussian Processes

Easy to place Gaussian process priors on non-invariant functions:

gp¨q „ GP
`

0, kgp¨, ¨
1
q
˘

q , g : RD
Ñ R , kg : RD

ˆ RD
Ñ R . (11)

Can construct an invariant f p¨q by summing over the orbit of the
group of transformations we want to be invariant to.

f p¨q “
ÿ

xaPOpxq

gpxaq (12)

Example: T group of all rotations
Orbit of image is set of images rotated by all angles
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Insensitivity

Parameterising orbits is hard, so we relax strict invariance constraint,
and sum over arbitrary sets Apxq

f p¨q “
ÿ

xaPApxq

gpxaq (13)

Parameterising sets is also cumbersome, so we take the infinite limit,
to get an expectation

f p¨q “

ż

gpxaqppxa | xqdxa (14)

§ No longer strictly invariant
§ Instead (roughly) a limit on P

´

p f pxaq ´ f pxqq
2

ą L
¯

§ Can interpolate between non-invariant and invariant
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Insensitive Kernels

The summation construction implies a kernel over f p¨q:

gp¨q „ GPp0, kgp¨, ¨
1
qq

f p¨q „ GPp0, k f p¨, ¨
1
qq (by linearity)

k f px, x1
q “ Eg

“

f pxq f px1
q
‰

“ Eg

„ˆ
ż

gpxaqppxa | xqdxa

˙ˆ
ż

gpx1
aqppx1

a | x1
qdx1

a

˙

“

ĳ

Eg
“

gpxaqgpx1
aq

‰

ppxa | xqppx1
a | x1

qdxadx1
a

“

ĳ

kgpxa, x1
aqppxa | xqppx1

a | x1
qdxadx1

a

Parameterise insensitivity by parameterising pθpxa | xq!
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Interpolating to strict invariance

f pxq gpxaq, pθpxa | xq
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Overview

We have introduced GP priors with invariance properties controlled by
pθpxa | xq.

Now we must compute
§ The marginal likelihood ppθ | yq and its gradients

for selecting the invariance
§ The posterior pp f | y, θq

to make predictions
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Computational difficulties

Approximations are necessary in Gaussian process models for the
well-known reasons:

§ Kernel inversions cost OpN3q

§ Non-conjugate likelihoods (classification)
§ No minibatch training

Here we have an additional problem:

We can’t even evaluate the kernel!
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Variational inference

Approximate posterior: Prior conditioned on M ! N noisy
observations f pZq “ t f pzmquM

m“1:

qp f pxqq “ N
´

f pxq; kxZK´1
ZZm, k f px, xq ´ kxZK´1

ZZpKZZ ´ SqK´1
ZZkZx

¯

L “

N
ÿ

n“1

Eqp f pxnqrlog ppyn | f pxnqqs ´ KLrqp f pZqq||pp f pZqqs

Gives: Approximate posterior , lower bound to marginal likelihood
Solves: inversion cost , non-conjugate likelihoods , minibatching
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Variational Inference

For Gaussian likelihoods

Eqp f pxnqqrlog ppyn | f pxnqqs “ ´
1
2

log 2πσ2
´

1
2σ2 pyn ´ µnq

2
´

σ2
n

2σ2

qp f pxqq “ N p f pxq; kxZK´1
ZZm

looooomooooon

µn

, k f pxn, xnq ´ kxZK´1
ZZpKZZ ´ SqK´1

ZZkZx
looooooooooooooooooooooooomooooooooooooooooooooooooon

σ2
n

q

With

rkZxsmn “

ĳ

kgpxa, x1
aqppxa | zmqppx1

a | z1
mqdxadx1

a

rKZZsmm “

ĳ

kgpxa, x1
aqppxa | zmqppx1

a | z1
mqdxadx1

a

Monte Carlo estimates could help if we didn’t have the inverses...
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Interdomain inducing variables

§ The variational distribution is constructed by conditioning on
“inducing observations”.

§ Which random variables we condition on determines the
covariances
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Interdomain Variational Inference

For Gaussian likelihoods

Eqp f pxnqqrlog ppyn | f pxnqqs “ ´
1
2

log 2πσ2
´

1
2σ2 pyn ´ µnq

2
´

σ2
n

2σ2

qp f pxqq “ N p f pxq; kxZK´1
ZZm

looooomooooon

µn

, k f pxn, xnq ´ kxZK´1
ZZpKZZ ´ SqK´1

ZZkZx
looooooooooooooooooooooooomooooooooooooooooooooooooon

σ2
n

q

With

rkZxsmn “

ż

kgpzm, xaqppxa | xqdxa

rKZZsmm1 “ kgpzm, zm1q

We can now find unbiased estimates of µn and σ2
n! This

trick also works with other likelihoods through the Pólya-Gamma trick!
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Procedure

§ Compute ELBO (marginal likelihood lower bound)
§ Back-propagate to variational and invariance parameters through

re-parameterisation
§ Optimise jointly

§ No need for even a closed-form evaluation of the kernel k f

§ Insensitivity distribution ppxa | xq can be implicit
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Results
We used various ppxa | xq:

§ Affine transformations (parameters: how much rotation / skew /
scale to apply)

§ Local deformations (parameters: how much deformation, how
much to smooth deformations etc)
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Conclusion

§ Can express invariances in kernels (but kernels intractable)
§ Can use the marginal likelihood for learning inductive biases
§ We only need unbiased estimates of kernels to train!
§ This is very much like learning the right data augmentation

Going forward:
§ Embed into deep structures (e.g. deep GPs/NNs, see latest arxiv

pre-prints)
§ Could we use infintely wide NN kernels?
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Minimising training loss

We’re looking for a fit that will generalise to new unseen test data.
Let’s minimise the training loss of the posterior mean.

Lpθ, σq “

N
ÿ

n“1

„

kθpxn, Xq

´

Kθ ` σ2I
¯´1

y ´ yn

2

(15)

tθ˚, σ˚
u “ argmin

θ,σ
Lpθ, σq (16)

We can fit anything with a tiny lengthscale and noise variance!
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Marginal likelihood fixes things

Instead, choose hyperparameters by maximising marginal likelihood:

In above L is indicated by ‘datafit‘, while ‘ELBO‘ indicates the marginal likelihood.

§ More sensible fit as the marginal likelihood rises
§ Datafit gets worse!

Marginal likelihood trades off
data fit and model complexity.
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