Imperial College London

Inductive Biases, Input Densities, and Predictive Uncertainty

Mark van der Wilk
Department of Computing Imperial College London

3" @markvanderwilk
m.vdwilk@imperial.ac.uk

Oct 13, 2021

Questions

- How do uncertainty and inductive bias interact?
- What is good behaviour of predictive error bars?
- Should we be uncertain "far away" from the training data?
- Can we use input density as a metric for predictive uncertainty?

How should we measure uncertainty quality?

- Toy examples to illustrate what it looks like when it works
- Inspiration for new ways to measure and probe behaviour?
- It's early, let's look at some pretty pictures (need Acrobat for animations)

Minimising training loss

We're looking for a fit that will generalise to new unseen test data. Let's minimise the training loss of the posterior mean.

$$
\begin{align*}
\mathcal{L}(\theta, \sigma)= & \sum_{n=1}^{N}\left[k_{\theta}\left(\mathbf{x}_{n}, X\right)\left(\mathbf{K}_{\theta}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{y}-y_{n}\right]^{2} \tag{1}\\
& \left\{\theta^{*}, \sigma^{*}\right\}=\underset{\theta, \sigma}{\operatorname{argmin}} \mathcal{L}(\theta, \sigma) \tag{2}
\end{align*}
$$

We can fit anything with a tiny lengthscale and noise variance!

How does uncertainty help?

Does uncertainty help against the overfitting?

Model Selection according to Bayes

Model selection from a Bayesian point of view:

$$
\begin{aligned}
p(f, \boldsymbol{\theta} \mid \mathbf{y}) & =\frac{p(\mathbf{y} \mid f) p(f \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\mathbf{y})} \\
& =\underbrace{\frac{p(\mathbf{y} \mid f) p(f \mid \boldsymbol{\theta})}{p(\mathbf{y} \mid \boldsymbol{\theta})}}_{p(f \mid \mathbf{y}, \boldsymbol{\theta})} \underbrace{\frac{p(\mathbf{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\mathbf{y})}}_{p(\boldsymbol{\theta} \mid \mathbf{y})}
\end{aligned}
$$

Key quantity for model selection is the marginal likelihood

$$
p(\mathbf{y} \mid \boldsymbol{\theta})=\int p(\mathbf{y} \mid f) p(f \mid \boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}
$$

By handing our uncertainty on $f(\cdot)$ in a Bayesian way, we also get the marginal likelihood for model selection.

Marginal likelihood fixes things

Instead, choose hyperparameters by maximising marginal likelihood:

In above \mathcal{L} is indicated by 'datafit', while 'ELBO' indicates the marginal likelihood.

- More sensible fit as the marginal likelihood rises
- Datafit gets worse!

Marginal likelihood trades off data fit and model complexity.

Why does marginal likelihood work?

We have seen

- Minimising training error doesn't work
- Uncertainty doesn't necessarily help, but does make us more cautious
- Marginal likelihood seems to trade-off complexity and data fit

But why does the marginal likelihood lead to models that generalise well?

Marginal likelihood as incremental prediction

We can split the marginal likelihood up using the product rule:

$$
\begin{align*}
p(\mathbf{y}) & =p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid\left\{y_{i}\right\}_{i=1}^{2}\right) \ldots \tag{3}\\
& =\prod_{n=1}^{N} p\left(y_{n} \mid\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n-1}\right) \tag{4}
\end{align*}
$$

- The marginal likelihood measures how well previous training points predict the next one
- If it continuously predicted well on all N points previously, it probably will do well next time

Marginal likelihood computation in action

log marglik: 0.00

Marginal likelihood computation in action

log marglik: 0.00

Marginal likelihood computation in action

log marglik: 0.00

Marginal likelihood evolution

- Short lengthscale consistently over-estimates variance, so can't get a high density even with the observation in the error bars
- Long lengthscale consistently under-estimates variance, so gets a low density because the observations are outside error bars
- Optimal lengthscale trades off these behaviours... well.

Marginal likelihood in action

- We chose the prior: $f(\mathbf{x})=\theta_{s} f_{\text {smooth }}(\mathbf{x})+\theta_{p} f_{\text {periodic }}(\mathbf{x})$, with smooth and periodic GP priors respectively.
- Marginal likelihood learns how to generalise not just to fit the data.
- Amount of periodicity vs smoothness is automatically chosen by selecting hyperparameters θ_{s}, θ_{p}.

Marginal likelihood in action

log marglik: -2.32

Marginal likelihood as a prior probability

A complementary view

- Marginal likelihood is the probability of the data under the prior.

$$
\begin{equation*}
p(\mathbf{y} \mid \theta, X)=\int p(\mathbf{y} \mid f(X), \theta) p(f \mid \theta) \mathrm{d} f \tag{5}
\end{equation*}
$$

- For zero-mean GP regression models it has the explicit form:

$$
\begin{align*}
\log p(\mathbf{y} \mid \theta, X) & =\log \mathcal{N}\left(\mathbf{y} ; 0, \mathbf{K}+\sigma^{2} \mathbf{I}\right) \tag{6}\\
& =-\frac{N}{2} \log 2 \pi-\underbrace{\frac{1}{2} \log \left|\mathbf{K}+\sigma^{2} \mathbf{I}\right|}_{\text {Complexity penalty }}-\underbrace{\frac{1}{2} \mathbf{y}^{\top}\left(\mathbf{K}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{y}}_{\text {Data fit }}
\end{align*}
$$

- Laplace approximations in Neural Networks look similar
- Pretty amazing that you can estimate updating behaviour from the shape of the loss function (ELBOs give lower bound!)

Intermediate take-homes

- Uncertainty and inductive bias interact! Prior is super important to getting the right behaviour in uncertainty
- Can't get strong generalisation without low uncertainty
- Marginal likelihood measures incremental predictive performance
- No need for hyperpriors to get good model selection!
- Is the marginal likelihood safe from overfitting?
\Longrightarrow It's safe from the kind of overfitting that the normal likelihood exhibits

Should we be uncertain far from the data?

Can we use input density as a metric for predictive uncertainty?

GPs as a Gold Standard for BNNs

- GPs considered the "gold standard" model for uncertainty estimation.
- Often in Bayesian Deep Learning, aim is to replicate GP properties in DNNs.
- Though implicitly, a GP with a Squared Exponential kernel.

GPs as a Gold Standard for BNNs

- ArcCos kernel is obtained from infinite limit of ReLU NN.
- Still exact inference in a GP. Different inductive bias!
- So what is the right one? What behaviour should BNNs copy?
- Both extrapolations are reasonable.

"Correct" extrapolation with model selection

- Marginal likelihood uses appreciable ArcCos component
- What if it's wrong?
- Terrible predictive log likelihood if we're wrong about extrapolation!

Telling the model it's wrong

- Single datapoint is enough to change inductive bias.
- How realistic is the train/test split assumption?
- Should we give models a chance to learn under distribution shift?
- We could measure how quickly they adapt?
- Little data can be very informative for OOD / causality

Invariance and Uncertainty

- Another example of strong extrapolation.
- Marginal likelihood prefers really strong predictions

Invariance and Uncertainty: Another solution

- Average over hyperparameters as well!
- More cautious predictions.

$$
\begin{equation*}
p\left(y^{*} \mid \mathcal{D}\right)=\int p\left(y^{*} \mid f\right) p(f \mid \theta, \mathcal{D}) p(\theta \mid \mathcal{D}) \mathrm{d} f \mathrm{~d} \theta \tag{7}
\end{equation*}
$$

Intermediate take-homes

- Extrapolation behaviour can be very desirable
- This is at odds with being uncertain "far from the data"
- Opinion: We should not rely on input density for uncertainty
- Overconfidence can be fixed with additional observations
- More Bayes also helps :-)

Discussion points

- Can we use input density for uncertainty estimation?
- Should we be assessing uncertainty as part of a continual learning process? Is it fair to force our models not to learn on the job?
- Causality is often hard because of a lack of data (coloured MNIST). Single example can break a hypothesis used for generalisation!
- How should we implement this behaviour? Bayes? Neural Processes? Meta-learning? Is Bayesian reasoning helpful with this?

