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About our research group

Growing research group, with focus:
§ Gaussian process inference, backed by theory to make

reliable decision making systems.
§ Automatic learning of inductive bias in neural networks.

Central question: When should neurons be connected?
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Hyperparameter Selection & Architecture Design

Every time we train a NN we need to decide on hyperparameters:
§ How many layers? How many units in a layer?
§ What layer structure? Convolutional? Skip connections?
§ Data augmentation parameters?

As architectures get more complex,
so does design! E.g. multitask.

§ Which layers to share?
§ What kind of task-specific

layers?
§ How much capacity to assign

to each task?

[Karpathy, ICML 2019]

Main tool is trial-and-error (“cross-validation”)
Goal: Make it as easy as learning weights.
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Invariances

Every prediction problem needs an inductive bias:

Architecture determines inductive bias through
e.g. equivariance:

§ Convolutions are a common solution
§ Can also convolve according to other

transformations (e.g. rotations)

Can we automatically adjust invariance
properties in layers?
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Summary

Goal:

Given a dataset,
adapt the inductive bias to it.

Key requirements:
1. Find a parameterisation for different inductive biases
2. Find a learning objective that works for inductive biases

§ We want to optimise it through backprop (so it’s easy!)

We will look at:
§ Invariances / equivariances parameterised though:

§ transformations on the input (data augmentation)
§ transformations on the filter (convolutions)

§ How Bayes helps with finding a learning objective
§ Single-layer and deep models
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Data Augmentation

1. Take a dataset y “ tpxn, ynqu
N
n“1

2. Create larger dataset y1 “ ttpxq, y | t P T , px, yq P yu
3. Train predictor f on y1
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Making Models Invariant

Data augmentation:
§ Imagine knowing that f pxq “ f ptipxqq for transformations ttiu

§ E.g., translation, small rotations, scale...

Procedure:
§ Apply random transformations to training data using pptq
§ Minimise new average training loss on new dataset:

w˚ “ argmin
w

N
ÿ

n“1

Epptqrlossp fwptpxqq, ynqs (1)
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Parameterising Invariance

What if we don’t know the transformations for which f pxq “ f ptipxqq?

Follow the usual Machine Learning procedure!

1. Parameterise your unknowns!
2. Add parameters to your augmentation distribution: ppt|θq
3. Try to learn the unknown parameters θ!

§ You could think of θ as containing the amount of different
transformations to apply.

§ In running example: Want small rotation invariance, large
translation etc...

Learnable Invariances in Neural Networks Mark van der Wilk Cambridge Ellis MLSS, UK, Jul 11, 2022 9



Training Loss

How do we find the right parameters θ?
§ Can we just minimise the training loss over θ?

w˚, θ˚ “ argmin
w,θ

N
ÿ

n“1

Eppt|θqrlossp fwptpxqq, ynqs (2)

§ It successfully learns w, after all..!

No /
§ Invariances (and data aug) try to constrain our model f p¨q so that

we have f pxq “ f ptipxqq
§ The easiest way to minimise the loss is to make xa “ xn,

... so no augmentation at all!
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Training Loss: Example
§ Rotated MNIST dataset:

§ The augmentation distribution ppt|θq randomly rotates training
input images, with θ controlling by how much.

§ “Point estimate” minimises the training loss:

§ This is why we use trial-and-error / cross-validation
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Hyperparameter Selection Example

fw,θpxq “ φθpxq
Tw “

K
ÿ

i“1

φ
piq
θ pxqwi (3)

Ltrain “

Ntrain
ÿ

n“1

p fw,θpxnq ´ ynq
2 ` λ||w||2 (4)

§ Sum basis functions with weights w,
hyperparameters θ control “wigglyness”.

§ Normally, we minimize Ltrain w.r.t. w,
while keeping hyperparameters θ fixed.

§ Architectural choices change the inductive bias,
like hyperparameters θ here change the width of basis functions.
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Why do we need cross-validation?
What happens if we minimise Ltrain w.r.t. both w and θ?

§ Training loss learns weights, only with fixed hyperparameters.
§ Why? Inductive bias is a restriction on functions.

Least restriction is best for training loss.
§ Cross-validation: Try different values of θ,

measure performance on separate validation set.
§ Goal: Find objective function for hyperparameters

that we can optimise with gradients.
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Bayesian Model Selection

Bayes tells us: Just find the posterior over all your unknowns!

pp f , θ|yq “
ppy| f qpp f |θqppθq

ppyq
“

ppy| f qpp f |θq
ppy|θq

looooooomooooooon

usual posterior

ppy|θqppθq
ppyq

looooomooooon

hyper posterior

(5)

§ Posterior over functions is unchanged!
§ Posterior over hyperparams requires marginal likelihood:

ppy|θq “
ż

ppy | f qpp f | θqdθ (6)

Bayesian model selection is commonly done by ML-II (Berger, 1985):

θ˚ “ argmax
θ

log ppy | θq , predict using pp f |y, θ˚q (7)

Gradient-based optimisation is super convenient!
... if we can compute ppy | θq
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Bayesian Model Selection: Example

§ Here, we optimise marginal likelihood instead of training loss.
§ Can still be computed on training data only.
§ And, we can compute gradients!
§ No more trial-and-error, here hyperparameter selection is

just as easy as learning weights!

Idea:
Learn NN architectural parameters in this way!
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Learning Data Augmentation

Can we formulate learning data augmentation
as Bayesian hyperparameter learning? (van der Wilk et al., 2018)

§ Incorporate the invariance of data augmentation
into the function, rather than the loss.

fw,θpxq “ Eppt|θq
“

φθptpxqq
Tw

‰

(8)

§ This now gives a proper Bayesian model:

ppyn|w, θq “ N
`

yn; fw,θpxq, σ2˘ , ppwq “ N pw; 0, Iq . (9)

§ The model has a well-defined marginal likelihood ppy|θq,
although it is intractable!
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Variational Inference

We want a tractable approximation to the marginal likelihood ppy|θq.

log ppy|θq ě L “
ÿ

n
Eqpwq

“

log ppyn|Eppt|θq
“

φθptpxqq
Tw

‰

q
‰

´KLrqpwq||ppwqs (10)

Apply a multi-sample Jensen’s inequality to Eppt|θq:

L ě
ÿ

n
Eqpwq

ś

s ppts|θq

«

log ppyn|
1
S

ÿ

s
φθptspxqqTwq

ff

´KLrqpwq||ppwqs

(Nabarro et al., 2022; Schwöbel et al., 2022; van der Ouderaa and van der Wilk, 2022)
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Results

§ Rotated MNIST dataset:

§ We now optimise Lpqpwq, θq, which avoids the collapse!

§ Can use gradient-based optimisation,
instead of trial-and-error / cross-validation!
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Results

We used various ppt|θq:
§ Affine transformations (parameters: how much rotation / skew /

scale to apply)
§ Local deformations (parameters: how much deformation, how

much to smooth deformations etc)

Learnable Invariances in Neural Networks Mark van der Wilk Cambridge Ellis MLSS, UK, Jul 11, 2022 21



Deep Neural Networks

§ In Immer et al. (2022), we apply the same principle to learn
invariance parameters for deep neural networks.

§ We use a Kronecker Factorised (K-FAC) Laplace approximation.
§ Can be justified as a Bayesian approximation, or as searching for

flat minima.
§ Improves performance for small subsets of data, and full dataset:

First authors Alexander Immer and Tycho van der Ouderaa
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Learning Equivariances

§ Previously, we added invariance by transforming the input image
§ Can we learn equivariance by transforming weights, like (group)

convolutions?
§ For a single layer, they are actually (nearly) equivalent!

Our construction for Data Augmentation was:

fw,θpxq “ Eppt|θq
“

φθptpxqq
Tw

‰

(11)

§ For neural networks, we have φθptpxqq “ σpW ˝ t ˝ xq
§ We can choose to apply t to W or x!
§ Transforming the filters allows us to learn convolutional

structure (van der Ouderaa and van der Wilk, 2022)
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Learning Equivariances

Rotated MNIST dataset:

Learned filters:

Filters for other transformed MNIST variants:
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Learning Invariances: Papers

§ Learning Invariances using the Marginal Likelihood
(van der Wilk et al., 2018)
Learning invariance by backprop, but Gaussian processes only.

§ Data augmentation in BNNs and the cold posterior effect
(Nabarro et al., 2022)
We investigated whether a principled approach to DA influences
the cold posterior.

§ Learning Invariant Weights in Neural Networks
(van der Ouderaa and van der Wilk, 2021)
Show how filter banks can be learned, but shallow NNs only.

§ Invariance Learning in Deep Neural Networks with
Differentiable Laplace Approximations
(Immer et al., 2022)
We show that the marginal likelihood works in deep NNs, and is
competitive.

Learnable Invariances in Neural Networks Mark van der Wilk Cambridge Ellis MLSS, UK, Jul 11, 2022 27



Summary

Goal:

Given a dataset,
adapt the inductive bias to it.

Key requirements:
1. Find a parameterisation for different inductive biases
2. Find a learning objective that works for inductive biases

§ We want to optimise it through backprop (so it’s easy!)

We looked at:
§ Invariances / equivariances parameterised though:

§ transformations on the input (data augmentation)
§ transformations on the filter (convolutions)

§ How Bayes helps with finding a learning objective
§ Single-layer and deep models
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Outlook

§ We want something better than trial-and-error to design NNs.
§ Bayesian methods are helping the automation of selecting

invariances, and making it as easy as backprop!
§ Can help make NNs 1) more accurate, 2) easier to use, 3) more

energy-efficient.
§ A lot more to do to get to the smarter neuron!

Meta-learning? More Bayes? Causality? Cellular automata?

Hard to say, but it’ll be fun to find out!
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Join us!

§ There will be an open PhD position for Apr/Oct 2023.
§ Check my website (https://mvdw.uk/) for tips on applying, and

how to get in touch.
§ Topics: Invariance, Bayes, Gaussian processes, BayesOpt,

PAC-Bayes, causality, meta-learning, model-based RL.
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Variational Bayesian Model Selection

Bayes tells us what to do, but not how to do it. Variational inference
actually does it, and gives us

§ An approximate posterior
§ An estimate of the marginal likelihood! (lower bound)

log ppy | θq “ Lpφ, θq `KL
“

qφp f q||pp f |y, θq
‰

ě L “
N
ÿ

n“1

Eqφp f pxnqqrlog ppyn| f pxnqqs ´KL
“

qφp f q||pp f |θq
‰

§ Find posterior and hyperparameters simultaneously by

argmax
φ,θ

Lpφ, θq (12)

§ Quality of posterior is linked to the accuracy of lower bound!
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